

Kirby.Runyon@jhuapl.edu

27 November 2020

Agenda

Discussions to be captured on Confluence. <u>https://lsic-wiki.jhuapl.edu</u> Email Andrea at <u>ams573@alumni.psu.edu</u>, for an account .

- Update on funding opportunities (5min)
- Brief recap of Fall Workshop and S&D Workshop (5min, discussions off line on confluence)
- Brief recap of S&D Workshop (5min)
- An eye on the Future for our FG. A working session. (20min on Confluence)
 - Our 1-yr goal and the needs of the Focus Group Members
 - Topics worthy of a ¹/₂ day workshop (it needs to resolve a dilemma). Ideas generated from the Fall meeting?
 - Joint & multi-FG topics and workshop concepts.
- Technology Showcase TransAstra, Joel Sercel (5min)
- Space Mining and relevance to ISRU Dale Boucher of Deltion Innovations. (20min)
- December FG meeting. 16 Dec.
 - Send suggestions if interested in hearing more about topics presented at the ASCEND conference. You can download the presentations by registering.

SPACE TECHNOLOGY OPPORTUNITIES

Space Technology anticipates awarding Space Technology Tipping Point Multiple Awards: \$250M ~\$600M to academia and industry January – March 2020 supporting 2020 solicitations and awards. Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) \$212M Phases I, II, II-E, Civilian Commercialization Readiness Pilot Program (CCRPP), Sequential: Phase I Solicitation, January – April 2020 Note: Funding Recent and/or **Open Solicitations** awards are Future Space Technology Research Institutes (STRI): \$30M As of October 2020 Solicitations approximate June – November 2020 ~10% ~ and subject to ~90% change. Lunar Surface Technology Research (LuSTR) Opportunities: \$20M July – September 2020 NASA Space Technology Graduate Research Opportunities (NSTGRO): \$19M NextSTEP Broad Agency Announcements (BAAs): September – November 2020 Varies Varied Release Dates Announcement of Collaborative Opportunity (ACO): \$10M SmallSat Technology Partnerships (STP): January - March 2020 \$3M September – November 2021 **Flight Opportunities Tech Flights:** \$10M Vertical Solar Array Technology (NRA, REDDI) February – May 2020 \$7.5M November 2020 Early Stage Innovations (ESI): \$9M https://breaktheicechallenge.com/ April – October 2020 https://lsic-wiki.jhuapl.edu/x/JYFf Early Career Faculty (ECF): \$6M February - April 2020 NASA Breakthrough, Innovative, \$1M NASA Innovative Advanced Concepts (NIAC) Phases I, II, III: Game-changing (BIG) Idea Challenge: \$4M Phase I Solicitation, June – July 2020 July – December 2020

2020-10-20 Please visit the STMD Solicitation website for more information:

SBIR & STTR released on Nov 9 https://sbir.nasa.gov/solicit/66886/detail?data=ch9

710 01

T14.01 Advanced Concepts for Lunar and Martian Propellant Production, Storage, Transfer, and Usage

Lead Center: GRC Participating Center(s): JSC

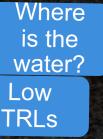
Scope Title: Advanced Concepts for Lunar and Martian Propellant Production, Storage, Transfer, and Usage Scope Description: This subtopic seeks technologies related to cryogenic propellant (e.g., hydrogen, oxygen, and methane) production, storage, transfer, and usage to support NASA's in-situ... Read more>>

Z12.01 Extraction of Oxygen and Water from Lunar Regolith

Lead Center: JSC

Participating Center(s): GRC, JPL, KSC, MSFC

Scope Title: Solar Concentrator Technologies for Oxygen Extraction and In Situ Construction Scope Description: Solar concentrators have been used to successfully demonstrate multiple in situ resource utilization (ISRU) technologies, including hydrogen and carbothermal reduction, sintering of... Read more>>


Fall Meeting Take-Aways

- What are Your thoughts and take-aways? Do you agree or disagree with these below? This is on confluence at <u>https://lsic-wiki.jhuapl.edu/x/KoFf</u> where you can make comments that will be captured.
- Modular/scalable technology and/or power options
- Dust mitigation and wear/tear on systems
 - How to do maintenance?
- ISRU demonstrations
 - Including prospecting and a better understanding of resource distribution and concentration
- Autonomous navigation/operations will be needed at all power levels
 - How long can a base be run autonomously?
- Need for detailed architecture and plans
- International cooperation is very important
- The need for ground-truthing measurements in PSRs and for geotechnical properties
- Sustained funding and policy support are necessary to maintain progress and ensure sustainability
- More information can be found on the Extreme Access monthly presentation.
- A more detailed recap will be presented on Dec 3 at the Power FG monthly.

LSII ISRU Industry Propellant Supply and Demand Workshop

A dozen industry talks with discussions during a half day virtual workshop in September, 2020. Over 200 attendees from over 100 institutions (recording at http://lsic.jhuapl.edu/Events/103.php?id=103)

Water

Strong demand projected for in-situ derived propellant.

- Industry based on actual plans and hardware
- 10s to 100s of metric tons of propellants a year, near term (within a decade)
- 80% of the demand is LOX

NASA and DOD can serve as anchor customers to ensure initial viability for this new marketplace

Two potential supply options

- Water (O_2 and H_2) from ice. (technology TBD)
- O₂ directly from regolith. (two possible technologies)

Supply challenges

- Low TRL of extraction equipment for ice and O2R.
- Insufficient knowledge of water as a reserve.

Eye on the Future https://lsic-wiki.jhuapl.edu/x/GYFf

ISRU FG Year 1 Goal.

Draft: There is a need for 10s to 100s of metric tons of O_2 per year for propellent use by the 2030 timeframe (S&D workshop, 2020). The first-year goal of the ISRU focus group is to provide specific input to NASA with respect to technology needs, the systems-level end to end processes, and for identifying the ground truth data needed to inform on technology/capability development, for both O_2 extraction from regolith and water extraction from PSRs at the above level.

- Topics worthy of a ¹/₂ day workshop (it needs to resolve a dilemma). Ideas generated from the Fall meeting?
- Joint & multi-FG topics and workshop concepts.

Your input to NASA...what do you want LSIC to do for you? Ideas you want to get in front of NASA?

C O N S O R T I U M

Note Taking Slide to Supplement Confluence

• Add more text here

Technology Showcase TransAstra Corporation Joel Sercel

Lunar Surface Innovation c o N s o R T I U M

Space Mining Dale Boucher

Confluence site: https://lsic-wiki.jhuapl.edu/x/EIFf

Also under ISRU/ISRU Meeting Notes/November 18/Space Mining Presentation/

JOHNS HOPKINS APPLIED PHYSICS LABORATORY